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General expressions for the discrepancy indices BRI(IN) and BR(IN), which are needed to test the cor- 
rectness of any type of incomplete model of a complex structure containing any number and species 
of atoms in the unit cell, are derived for the related and unrelated cases. Explicit expressions for these 
indices for crystals containing all atoms in general positions are also tabulated for the seven categories 
of space group in the triclinic, monoclinic and orthorhombic systems. Expressions needed for handling 
crystals containing atoms in both general and special positions and those needed for taking into account 
random errors of observation in the intensities are also derived. 

Introduction 

A comparative study of six types of discrepancy in- 
dices in their normalized form for crystals and models 
satisfying the requirements of the basic Wilson di- 
stributions (Wilson, 1949) in the different stages of 
structure analysis carried out in Part III of this series 
(Parthasarathy & Parthasarathi, 1975) has shown that 
of all the indices, the Booth-type index based on 
intensity, i.e. 8R~(1), is the best during the structure 
completion stage. It is therefore useful to obtain 
general expressions for this index which can be used 
to test the correctness of any type of incomplete model 
of a complex structure.t Explicit expressions for the 
indices aRt(I) and ~R(I) for the related and unrelated 
cases have been derived earlier for a few special cases 
(Parthasarathy & Parthasarathi, 1972; Parthasarathi 
& Parthasarathy, 1975; - the former is hereafter 
briefly referred to as PP). Wilson (1969) has studied the 
effect of a single wrong atom in an otherwise correct 
and complete model structure on the index BR(I) and 
Lenstra (1974) has recently carried out similar studies 
for incomplete models. In this paper we shall derive 
general expressions for the indices BRa(I) and ~R(1) 
corresponding to the related and unrelated cases when 
the trial model as well as the crystal contain any num- 
ber and type of atoms in the unit cell in both general 
and special positions; these results hold good for crys- 
tals belonging to the triclinic, monoclinic and ortho- 
rhombic systems. The case of crystals with pseudosym- 
metry is however not considered since individual treat- 
ments are needed for specific types of pseudosymmetry. 
In the theory it is found to be convenient to treat 
first the case of crystals with all atoms in general 
positions and this is dealt with in §2. Expressions 

* Contribution No. 386 from the Centre of Advanced 
Study in Physics, University of Madras, Guindy Campus, 
Madras-600025, India. 

t It is fortunate that of the various R indices suggested so 
far, this is the simplest to manipulate theoretically for any 
complex situation. 

applicable to crystals and models with atoms in both 
general and special positions are derived in {}3. Ex- 
pressions which take into account random errors in 
the observed intensities are obtained in §4. §5 contains 
a discussion of the results. 

In this paper we shall generally follow the notation 
and nomenclature used in PP. A few changes are 
however found to be necessary. Some of these will 
be explained here and the others at the appropriate 
places in the text. We shall consider a crystal contain- 
ing N atoms in the unit cell and an incomplete model 
containing P atoms. The unknown atoms are denoted 
by Q(=  N-P) as in PP. In a model of the  semi-related 
type, the correct atoms and the wrong atoms will be 
denoted by the symbols R and W respectively (instead 
of Pr and Pw used in the paper PP), and the group of 
atoms designated as Pr' in PP by the symbol R'. 
The fractional contribution to the local mean intensity 
from the P, Q, R and W groups of atoms will be 
denoted by the symbols O'12p, O'2Q, tT12R and a2w respec- 
tively (these were denoted by a~, a~, a~zr and cr~w in 
PP). We shall use lobs to denote the observed intensity 
for a given reflection and IN for its true value. That is, 
1N=lobs when there are no errors of observation. As 
in PP we shall denote the calculated intensity for the 
model by I~. We shall use the symbols BRI(IN) and 
nR(IN) when we deal with the ideal situation in which 
the intensities are assumed to be known with perfect 
accuracy and the symbols nR~(Iobs) and BR(Iobs) when 
dealing with the actual situation in which observed 
intensities with random errors are involved. That is 

/ ~ / ~ )  )/(/N) (1) BRI(IN) = ( ( I N - - c  Z 2 Z 

BR(IN ) = ((IN-- I[,)2)l (I~) (2) 

If,/alv) )/(Iob~) (3) ~R~(Io~) = ((Iobs- ': ~ ' 
= ((Iobs- I,g) )/(/~b~) • (4) BR(Iot, s) ~ z 2 

We shall define a quantity ~ to be 

~=  2 for the non-centrosymmetric case 

-- 3 for the centrosymmetric case. (5) 
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2. Derivation of expressions for BRa(IN) and BR(IN): 
all atoms in general positions 

Notation 
Let s o be the symmetry number (i.e. the number of 

equivalent general positions in the unit cell) of the 
space group. Lower-case letters (e.g., n, p, r and w) 
are used to denote the number of atoms in the asym- 
metric unit. Thus 

n = N/s o, p = P/s o . (6) 

The quantities pertaining to the whole unit cell are 
characterized by N, P, etc. as subscripts to the relevant 
quantities and those pertaining to the asymmetric 
unit by n, p, etc., as subscripts. Following Foster & 
Hargreaves (1963a; 1963b; these two papers are here- 
after briefly referred to as FH, 1963a and FH, 1963b 
respectively), the sum of the mth powers of the scat- 
tering factors of the atoms in group j ( j=n ,  p or r) 
of the asymmetric unit is denoted by Ss(m ). That is 

3 
Sj(m)= ~f j~ ,  j = n ,  p or r .  (7) 

k = l  

The meaning of the quantities Sp(2), Sv(4), S,(2) and 
S,(4) which occur in the final expressions for the R 
indices is now obvious. Following Parthasarathy (1973), 
the quantities* C~(4), C~(4) and (7,(4) are defined to be 

Cj(4)=Sj(4)/[Sj(2)] z, j = n ,  p or r .  (8) 

We shall first obtain the expressions for nR~(Iu) and 
~R(IIO for the semi-related case and then deduce the 
expressions for the related and unrelated cases by 
taking suitable limits. 

Index .R~(IN) 
Semi-related ease: In the present notation the structure 
factor relations in equations (3), (4) and (A1) of PP 
can be rewritten as 

FN=Fe+Fo ,  Ff ,=FR+Fw,  F e = F R + F w .  (9) 

From (1) it can be shown that 

1 2 (IuI~ > 
~r'~, (I~'2)-- o'2---~ 

,R,(IN)---- 1 -+- (12) (10) 

Since the atoms in the model correspond in number 
and scattering power to the P atoms of the true struc- 
ture, it follows that 

((I~)m)=(lrfl), m = l , 2 , . . . .  (11) 

A convenient expression for the quantity (INIf,) oc- 
curring in (10) can be obtained from PP. Thus, re- 
writing equation (A7) of PP in terms of the intensity 
variables, we obtain 

(INIf,>=(I~>+(l~:>[(Iw>+(IQ>l+(I~v> (Iw>. (12) 

* In the rest of the paper these quantities are briefly denoted 
by C~,, C, and C, respectively for convenience. 

Making use of the results in (9) and (11), we can show 
that 

( I w ) = ( I w ) = ( Z p ) - - ( I R ) ,  ( Io )=( IN) - - ( I1 , ) .  (13) 

In view of (13), we can rewrite (12) to obtain 

( I n I [ , ) = ( 1 2 ) - - ( I a ) Z + ( I N )  ( I v ) .  (14) 

Making use of (11) and (14) in (lO), we obtain 

1 ( I ~ ) -  ~@p[(12)-(In)Z+(IN)(I~,)]  
BRI(IN) = 1 + a4P 

(12 ) 
(15) 

In terms of the normalized variables zN, z~, and ZR 
of PP, we can rewrite (15) as 

2 4 _ 2  4 <Z2> - ~2---~ [~71R<Z;R>--G1R ~-C~2P] 
, ,RI( I~)  = 1 + -  ( z ~ )  (16) 

For the seven categories of space group in the triclinic, 
monoclinic and orthorhombic systems (for details of 
classification into seven categories see FH, 1963b) the 
second-order moments of zN, zp and ZR can be shown 
to take the general form (see Parthasarathy, 1973) 

(z2)=o~-flC,, ,  (z~)=o~-f lCv,  (z~)=o~-f lCr,  (17) 

provided the quantity ~ is defined as in (,5) and fl as 
in Table 1. Substituting (17) in (16) we obtain 

[ ~ 4  -/~c, + 2~cr °~" ] L ~-2  + 2(1-c0 a---~- a-~-] 
nRa(IN) = 1 + 

~-#C. 
(18) 

Table 1. Values o f  the constants t ,  to, lz o and vo for  the 
seven categories o f  space group belonghTg to the triclinie, 

monoclinic and orthorhombic systems 

Space-group category number 

Constants 1 2 3 4 5 6 7 
fl 1 ~- ½ ¼ ¼ -¼ -~- 
zo 1 ½ ½ ¼ ¼ ¼ { 
It o 2 k ½ ~ ~ { 3__ 1 6  6 4  

6 4  6 4  64. 5 1 2  

Note: The values of ri,/ti and vt(i= 1,2) can also be read from 
the above table (against to, po and vo respectively), provided 
the category number appropriate to the special positions of 
interest is known. This can be determined from a study of 
Table 1 of FH (1963b) keeping in view the form of the geo- 
metrical structure-factor formulae for these special positions. 

Related case" If all the atoms in the model are correct, 
then alw-+crlp and C~---~Cp. Equation (18) therefore 
yields 

BRI(IN)= 1 + ~-- 2 + 2(1 -- ~)a~P +fl(2cr~2P-- 1)Cv (19) 
~-pC. 
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Unrelated case: If all the atoms in the model are 
wrong then alR-+0 and hence (18) yields 

BR~(Iu)= 1 + a - 2 - f l C p  (20) 
~ - f l C .  

For the present case, for atoms in general positions 
only, the quantity a~e in (19) can be shown to be 

a2e = Sp(2)/S,(2). (21) 

Index BR(IN) 
The results for the unnormalized index BR(IN) can 

be obtained by following exactly the same procedure 
and hence only the equations are given. 

Semi-related case: 

(12)--2[(I2)- - ( IR)2 + (In)  (Iv)] 
. n ( I N )  = 1 + (12 ) 

4 2 4 2 4 o~p(z~)- 2 [o , . (z . ) -  o,.  + o~1 
= 1 +  

(z~) 
~aae+2(1 4 2 4 - ~ ) a~ -  2ch~- flCpCrl~ + 2flC, cr4~ 

= 1 +  

Related case: 

~R(Iu) = 1 4- 

o~ - fl C,, 
(22a, b, c) 

ax2e[(2 - a)a~e- 2 + flCpa2~e] (23) 
o¢ - fl C,, 

Unrelated case: 

nR(iu)=l + a~e[aa~e-2-flCpa~e] (24) 
~ - f l C .  

3. Derivation of expressions for BRI(IN) and aR(IN): 
atoms in both general and special positions 

We can think of three possible types of special posi- 
tion, namely, special positions with 1, 2 and 3 fixed 
parameters respectively (or equivalently, with 2, 1 and 
0 variable parameters; see FH, 1963b) and for brevity 
we shall refer to the special position with i fixed 
parameters as special position of type i (i=1,2,3).* 
We shall use the letter g as subscript to any quantity 
pertaining to general position and the numbers 1, 2 
and 3 as subscripts to quantities pertaining to special 
positions of types 1, 2 and 3 respectively. Thus while 
s o is used to denote the number of equivalent general 
positions in the unit cell, the symbol si is used to 
denote the number of equivalent special positions of 
type i ( i= 1,2,3). Following Foster & Hargreaves 
(1963b) we shall define the quantity 2i by 

2t =sJso, i=  1,2, 3 .  (25) 

Of the N atoms in the unit cell, let N o occur in general 
positions and NI, N2 and Na in special positions of 
types 1, 2 and 3 respectively. Of the P atoms of the 

* For convenience we shall also refer to special position of 
type 3 as fixed position. 

incomplete model let Po occur in general positions 
and P1, P2 and P3 in the three types of special posi- 
tions. Thus 

3 3 

N =  N~ + x~ Ni, P =  Po + ~, Pi . (26) 
i = 1  I = 1  

We shall define the quantities]" no, Po, ni and pi to be 

n o = No~so, po = Po/so, 
n~=NJs~, p,=P,/sg, i = 1 , 2 , 3 .  (27) 

In an obvious notation, the following structure factor 
equations hold good 

3 3 

FN= FNo + Y. rN,, F~= F~o + ~ r e , .  (28) 
i = 1  1=1  

For the treatment of cases involving atoms in both 
general and special positions, it is convenient to handle 
structure factors F,, and F~ for the asymmetric unit 
instead of the absolute structure factors FN and F~ 
(see FH, 1963a). We shall therefore define the quan- 
tities F, and F~ to be 

3 

F, = Fu/s o = F,o + ~ 2,F,, (29) 
t = 1  

3 
C _ _  C 1 C C F p - F f , / s o - F p o +  ~ 2,Fp, ,  (30) 

l = 1  

where 

F, o = F,o/s o, FT, o = F['o/so, 

F, ,=Fm/s , ,  F~n=F[,,/si, i = 1 , 2 , 3 .  (31) 

We shall denote the intensity variables associated 
with F, and Fg by I, and Ig respectively. That is 

C__ i = l F ,  iZ=iN/s~, i p_ lFg l  z c =If,/s o . (32) 

Related case: For this case we have to set ( I~ ' )=  
( Ip) ,  m = l , 2  in (15) and (22a). Since l f ,=Ip for a 
related model, we obtain 

1 2 2 2 
(0"4p 0"2p ) (IP)+-~x e [ ( Ip )2 - ( l , ) ( Ip ) ]  

BRI(IN)=I+ ( q )  
(33) 

2 ( I p ) 2 - ( I 2 ) - 2 ( I ' ) ( I " )  (34) 
nR(IN)= 1+ ( /2)  

where we have made use of (32). In crystals containing 
atoms in both general and fixed positions (i.e., special 
positions of type 3), since the atoms in the fixed posi- 
tions make different but specific (i.e. constant) con- 
tributions to different categories of hkl reflexions 
(see FH, 1963b), the values of the R index for a given 
model of such a crystal would be different for the 
different categories of reflexion. This aspect is to be 
remembered in the evaluation of R indices. 

t If No, Nt, ng, nt etc., occur as subscripts to other quanti- 
ties, then they will be written as No, Ni, no, ni, etc., for con- 
venience. 
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Semi-related case: In crystals containing atoms in both 
general and special positions, the correct locations of 
all the atoms in fixed positions would usually be 
known even at the beginning of a structure analysis 
(i.e. after the space group has been determined). It 
is therefore more appropriate to derive expressions for 
the R indices corresponding to the semi-related case 
by assuming that all atoms in fixed positions in the 
crystal are included in the model as correct atoms 
(i.e. R=P3=N3 and FR = Fp3 = Fro) while all the other 
atoms of the model are wrong. We shall also assume 
that the wrong atoms of the semi-related model cor- 
respond in number and type of location to the cor- 
responding P atoms of the true structure. That is, if 
an atom is known to lie at some point on a mirror 
plane in a given crystal (the exact location r of the 
atom being unknown) then in the semi-related model 
also the atom is taken to lie on the same mirror plane 
but at an entirely different point r'. With these as- 
sumptions, it is obvious that (11) holds good tbr the 
present case as well. Further, since (14) was derived 
by assuming that only the R group of atoms is com- 
mon to the model and true structure, it also applies 
to the present case provided we replace la by Ip3(= 
lFe312). That is 

<Iulf,>=<l~3>-<Ie3>z+<IN><Iv>. (35) 

For a given category of hkl reflexions, since the con- 
tribution Iea from the atoms in the fixed positions is a 
constant quantity [see equation (46)], it is obvious that 

< I 2 3 >  = < I p 3 >  2 =  1,23. ( 3 6 )  

In view of (36), we obtain from (35) 

<lslf, >= <I~><Ie> . (37) 

Making use of (11) and (37) in (12), we thus obtain 

1 <i~>_ 2 
~R,(lu)= 1 + 0"1P 0"T <IN><le> 

. . . .  (38) 

which in terms of the intensity variables I. and Ip 
becomes 

1 <1~>- 2 
o1. - 0"~--~ </,,><Iv> 

BRt(IN)=I+ <i#> . (39) 

By following a similar procedure, we can show from 
(22a) that 

<I~>-2<I.><Ip> (40) 
.R(IN) = 1 + <12> 

For further simplifications of (33), (34), (39) and (40) 
it is necessary to obtain expressions for <I~') and 
<I~'>, m = 1,2, by assuming that all the atoms in fixed 
positions in the structure are included as correct atoms 
in the model (i.e. I~.3 =IN3) and we shall now consider 
this aspect. 

From Table 3 of FH(1963b) it is seen that 

3 

<1.>= <I.o > + ~. 2~<I.,> 
i =1  

and 
3 3 

2,<I.,>+ K1<I,,9>[ ~ 2~<I.,>] <1,2> = <i~o > + ~, 4 2 

/=1  i=1  

2 2 222a<I.2) <I,.3> + K~[2v;!.z<I,a> <I.z> + 2 2 

(41) 

2 2 + 2321<I,,3> <I.,>] (42) 

where the quantity/(1 is defined to be 

K1---6 for the centrosymmetric case 

=4  for the non-centrosymmetric case. (43) 

From Table 1 of FH (1963b) it is seen that for any of 
the seven categories of space group, the expressions 

12 for <I,9 ) and < ,g> can be written in the form 

<I.o>=r9S.o(2), <129>=/~o[S,,g(2)]z- vgS.o(4 ) (44) 

provided the quantities r o,/~o and v o are defined as in 
Table 1. Similarly it is readily seen that </,.> and 
(12i> (i= 1 and 2) can be written as 

<I.,>=z,S.,(2), <12.,>=,u,[S.,(2)12- v,S.,(4). 

i = 1 , 2 .  (45) 

The quantities r~,/~ and v~ (i = 1,2) have specific values 
for a given space group and can be evaluated by the 
method described in §5. If f~, fz, , . . . ,  f,3 are the 
scattering powers of atoms at the non-equivalent 
fixed points 1,2, . . . ,n3,  we can show that (see FH, 
1963b) 

n3 
<I23>= [ ~./~fjlzm (46) 

j----1 

where / j=0,  +1 or - 1 .  The appropriate values of 
lj are to be obtained from the geometrical structure 
factor by substituting the coordinates of the fixed 
points. It is obvious from (46) that for a given category 
of hkl reflexions, 1.3 has a constant value. 

Substituting (44) and (45) in (41) and (42) we thus 
obtain 

2 

<I.>= zoS.o(2) + ~, 22~r~S.~(Z) + ).2(In3 ) (47) 
l = l  

2 

(12> =,uo[ S.o(2)] 2 -  voS,,o(4) + ~, ),4[fl,{ S,,,(2) } 2 
/=1  

2 

-v,S, ,(4)l+ 24(g3>+ KlroS,,o(2)[ ~ 2~r,S,,(2) 
l = l  

+ 2~<1,3>] + K112z2~rlZ2S, x(2)S,2(2) 

+ 2~J.]z2S,2(2)</,,3)+ 212~raS,,x(2)<l,3)]. (48) 

Following a similar procedure and remembering the 
assumption that ffp3=FN3 w e  can similarly show that 
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2 

(Iv>=%S,g(2)+ ~ 2{r,S,,(2) + 2a2<l,a> (49) 
, = 1  

2 

(l})=,ug[Svg(2)] z -  vgSvo(4) + ~.. 24[#,{S,,(2)} z 
/ = 1  

2 

- v ,Sv , (4 ) ]  + /~4<I23> "31- K~roS,o(2)[ ~, 2~r,S,,(2) 
i = 1  

+ 2~(I.3 )] + K,[A~A~r,r2S,~(2)Sp2(2) 

+ ap&~&,(2)(Io,> + &~q&l(2)(I.~>]. (50) 

Since the expressions for (I~") and (l,m), m =  1,2, are 
complicated, it is not convenient to substitute (47) - 
(50) in (33), (34), {,39) and (40) and simplify the result- 
ing expressions. However for any actual situation, it 
would be easier first to evaluate these quantities nu- 
merically from a knowledge of the unit-cell contents of 
the crystal and the model and then substitute these 
numbers in the latter equations for obtaining the rel- 
evant numerical values of the R indices. From (47) 
and (49) it is seen that the quantity a~, for the present 
case takes the form 

2 

%S,0(2) + ~ ,a.{%S,,(2) + ;L32(I.3) 
a~= '=' (51) 2 

roS.g(2) + ~ ;t{ r,S.,(2) + ~2<In3 > 
/ = 1  

4. Theoretical expressions for BR1 (lobs) and Be(Iobs) 

The indices BRl(Iobs) and sR(lobs) can be related to the 
indices BRI(IN) and BR(IN) respectively and the latter 
can be evaluated from the theoretical results in §§2 and 
3. If we define 

e= lobs-- IN, ~= IN-- If,, c~l= I~-- l[,/alvC 2 

and assume that (i) the errors in the observed intensities 
are normally distributed with parameters (0, a~) and 
(ii) there is no correlation between the error and the 
magnitude of the intensity (Wilson, 1969), then fol- 
lowing the treatment in PP, it can be readily shown 
that 

2 

2 2 (I~v) + G 

_ [ a~ + B R I ( / u ) ] / [ I +  a~ ] -- L(I~> ~-~-~j (52) 

.R(Iobs) -- a~ 

] (53) 

When the intensities are sufficiently accurate, we can 
2 in the denominator in comparison neglect the term or, 

with (I~) and obtain the following more compact ex- 
pressions from (52) and (53), 

BR~(Iobs)"--,Rt(IN) 2 z +a~/(I~,> (54) 
2 2 .n(G3-~.n(l~)+a~/<I~>. (55) 

5. Discussion of results 

All atoms in general positions 
Explicit expressions for BRz(1N) and BR(I~v) for the 

related and unrelated cases for the seven categories 
of space group of the triclinic, monoclinic and ortho- 
rhombic systems are to be obtained by substituting 
the appropriate values of e and fl in the general ex- 
pressions obtained in (19), (20), (23) and (24) and the 
final results thus obtained are summarized in Table 2. 
It is seen that these expressions depend on the quan- 
tities ff~p, C n and Cp. For any given model of a struc- 
ture under investigation, these quantities can be evalu- 
ated from a knowledge of the contents (i.e. the species 
of atom, their scattering powers and the number of 
atoms in each species) of the asymmetric units of the 
true structure and the trial model. In structures con- 
taining atoms of widely different scattering power, 
these quantities in general vary with (sin 0)/2 and there- 
fore, so will the theoretical values of the R indices. 
Furthermore, in space groups of higher symmetry 
these theoretical values may differ for different classes 
of reflexion. The overall values of the R index (taking 
into account these two factors) for the related and 
unrelated cases which are needed in practice can be 
obtained by the following procedure: Divide the re- 
flexions into r regions of (sin 0)/2. Suppose there are 
e distinct categories of reflexion in each range, the 
category being determined by the form of the geome- 
trical structure factor. Making use of the known values 
of the scattering factors of the atoms corresponding 
to the middle of the range and the known contents of 
the asymmetric units of true and trial structures and 
employing the theoretical expressions appropriate to 
the various categories of reflexions, calculate the theo- 
retical values of the R index for the e categories of 
reflexion. For reflexions of category j in range i let the 
value of the R index be denoted by R,j and let fij be 
the fractional number of such reflexions. The theore- 
tical overall value of the R index, denoted by/~, would 
then be given by 

l = l  j = l  

A toms in both general and special positions 
When atoms occur in both general and special 

positions, the change in the geometrical structure- 
factor formula and the different multiplicities of equiva- 
lent positions for atoms in special positions must be taken 
into account for determining the quantities ( I~)  and (lg'), 
m = 1,2, from (47)-(50). Given the space group of the 
crystal, the possible types of special position and the 
quantities (whichever is relevant for the given space 
group), s o, z~, #o, vo, si, 2, (i = 1,2, 3), zj,/z i and vj (j = 1,2), 
are uniquely determined. The numerical values of the 
quantities to,/z o and v~ for any of the seven categories 
of space group can be read from Table 1. The values 
of the quantities rj,/zj and vj ( j =  1,2) can be obtained 
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Table 2. Theoretical expressions for BRI(IN) and 8R (IN) 
for the related and unrelated cases for any model of  a 
complex crystal belonging to triclinic, monoclinic and 

orthorhombic systems: all atoms in general positions 

BR~(I.) BR(I~,) 
Related Unrelated Related Unrelated 

2h + t6 2 - t5 2h + t~ 2t2 - ts 
2 -  C, 2 -  C, - -2- -C,  .... 2 -  C, 

8tl d- 3t6 8 -  3ts 2ta + 3t7 2 t4-  3ts 

Space-group 
category 
number  

6 -  3C,, 6 - 3 C .  6 -  3C,, 6 -3 (7 .  

4h + t6 4 - ts 4h -1- t7 4t2 - ts 
4-C,  4-C,  4-C,, 4 -C,  

16tl + 3t6 16 - 3ts 4t3 + 3t7 4t4- 3ta 
12- 3Cn 12- 3Cn 12-3Cn 12-3(7, 

8tt + t6 8 -- ts 8h + t7 8t2 -- t8 
8 - C ,  8 - C ,  8 - C ,  8 - C ,  

8tl -- t6 8 + ts 8h -- t7 812 + ts 
6 

8 + c ,  8 + c ,  8+c,, 8 + c ,  

32h-3 t6  32+3ts  8 t 3 - 3 t 7  8t4+3ts 
7 

24+  3C. 24+ 3C. 24+3(7. -  24 + 3-C. 

h = 1 - a~p ts = Cp + C .  
t2 = 1 -- tr2e + tr~e t6 = ( 2cr~e -- 1)Cp - Cn 
t3 = 3 - 2O2p - cr4e t7 = cr4eCp - C .  
t 4 = 3 - 2 a ~ p +  3a  4.  t s = c r ~ p C p + C .  

by studying Table 1 of FH (1963b) keeping in view 
(i) the forms of  the geometrical structure factors for 
these special positions and (ii) the form of the expres- 
sions in (45). It is useful to note here that in crystals 
containing atoms in fixed positions, it is in general 
necessary to classify the reflexions into different cate- 
gories and evaluate the theoretical and experimental 
values of the R indices for the various categories 
separately. The method of classifying the reflexions 
into categories can be understood from the illustrative 
examples given in FH (1963b) in connexion with the 
moments test for space-group determination. 
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Derivation of Carbon-Nitrogen, Hydrogen-Nitrogen and Nitrogen-Nitrogen Non-Bonded 
Potential Parameters in Molecular Crystals* 

By H. A. J. GOVERS 
Department of  Chemical Thermodynamics, Rijksuniversiteit Utrecht, Padualaan 8, Utrecht 2506, The Netherlands 

(Received 7 January 1975; accepted 9 January 1975) 

Potential function parameters for CN, HN, and NN non-bonded atom-atom pair interactions were 
derived from the heats of sublimation of cyanogen and dicyanoacetylene and from the crystal structures 
of cyanogen, dicyanoacetylene, tetracyanoethylene, s-tetrazine, pteridine and pyridazino[4,5-d]pyrid- 
azine. Procedure and CC, CH, and HH parameters used were those of Williams [J. Chem. Phys. (1967). 
47, 4680-4684]. The exponents of CN, HN, and NN repulsion terms were taken equal to those of CC, 
CH, and CC repulsion terms, respectively. The lattice summation was cut off at 6, 5.5 and 6 ,~ for the 
CN, HN, and NN terms, respectively. The coefficients of the attractive and repulsive terms were fitted 
by weighted least-squares calculations to 45 observational equations. It proved to be necessary to 
estimate externally the parameters of the HN attractive term. The derived parameters show rough 
agreement with the values found by other investigators. The experimental values of the heats of sublima- 
tion of cyanogen and dicyanoacetylene are reproduced within 4 % with the calculated parameters. The 
parameters predict reasonable values for the heats of sublimation of tetracyanoethylene, s-tetrazine, 
pteridine and pyridazino[4,5-d]pyridazine. A difference of about 6 kcal mole -1 between the heats of 
sublimation of the latter two isomers was calculated. 

Introduction 

In order to calculate the lattice energy of molecular 
crystals the a tom-a tom approximation has proved to 

* This work forms part of a thesis by Govers (1974). 

be a valuable tool (Williams, 1966, 1967, 1974; Kitai- 
gorodskii, 1973). In all these calculations lattice energy 
is treated, completely or for the greater part, as a lim- 
ited summation of interatomic potentials between the 
atoms of a molecule chosen as central and the atoms 
of a limited number of neighbouring molecules. Pair- 


